WFU_BPM Toolboxes

BETA VERSION 1.5d

The WFU Biological Parametric Mapping (BPM) Toolboxes have been developed to perform SPM analysis with imaging covariates.

REFERENCE

Ramon Casanova, Ryali Srikanth, Aaron Baer, Paul J. Laurienti, Jonathan H. Burdette, Satoru Hayasaka, Lynn Flowers, Frank Wood and Joseph A. Maldjian

Biological parametric mapping: A statistical toolbox for multimodality brain image analysis • SHORT COMMUNICATION

NeuroImage, Volume 34, Issue 1, 1 January 2007, Pages 137-143

FUNDING

R01EB004673 under the Human Brain Project and NIBIB

SCHOOL of MEDICINE
THE BOWMAN GRAY CAMPUS

WFU_BPM SETUP

WFU Toolboxes Beta Release Distribution

```
The beta package is distributed with this directory structure:
```

```
wfu_toolboxes/
wfu_startup.m
wfu_bpm/
wfu_compatibility/
wfu_insertion_tool/
WFU_PickAtlas/
wfu_utilities/
wfu_bpm_data/
bpm_img/
bpm_results/
bpm_simulated_data/
```

Requirements

SPM2 or SPM5

MATLAB version 6.5 or higher

Download, Extract, Select Toolboxes

```
For UNIX, download the compressed unix tar file, wfu_bpm_beta.tar.gz, and extract with: gunzip wfu_bpm_beta.tar.gz tar xvf wfu_bpm_beta.tar
```

For PC/WINDOWS, download and unzip the contents of the WINDOWS ZIP file, wfu_bpm_beta.zip.

Edit wfu_startup.m inside the wfu_toolboxes directory to select the WFU toolbox options for your site. Set each of the following parameters to 0 (for no) or 1 (for yes):

```
add_bpm
add_insertion_tool
add_utilities
add_compatibility
add_pickatlas
```

Add compatibility only if reconciliation with SPM-99 input is needed.

Running the WFU Toolboxes

(1) Once the SPM2 or SPM5 path is set in MATLAB and spm_defaults has been called, add the path of the wfu_toolboxes directory. For example, if located here:

```
c:\software\wfu_toolboxes
```

then issue this command:

```
addpath('c:\software\wfu_toolboxes');
```

(2) Add the paths for all the selected WFU toolboxes with:

```
wfu_startup;
```

(3) Run the toolbox of choice. To execute BPM:

```
wfu_bpm;
```

WFU BPM EXAMPLES

The distribution includes example data and example results in the wfu_bpm_data directory. To preview the results that have already been generated with the example data sets, refer to the bpm_img subdirectory which contains JPEG images of screenshots from both WFU_BPM GUI selections and SPM/Results. To re-run the examples, follow the steps listed in the WFU_BPM_RESULTS section below.

WFU BPM SIMULATED DATA

** Located in: wfu_bpm_data\bpm_simulated_data

SIMULATED DATA for BPM example input (anova, ancova, correlation)

SIMULATED DATA for BPM example input (regression)

Main Modality 1 = rmod1

Confound 1 = rmod2
Confound 2 = rmod3

Directories:

./rmod1 ./rmod2 ./rmod3

File lists (FLISTS):

reg_main_mod1.flist (rmod1/)
reg_conf1.flist (rmod2/)
reg_conf2_flist (rmod3/)

SIMULATED DATA ... FLISTS

The file list, or flist, is a text file listing file names used as input, one file name per line. If numeric, the first line in the flist specifies the number of file names to be read from the list that follows.

Typically the input data files may be scattered all over one or more disks, and the file names in the flist will include the full directory path of the file. It is best not to have blanks in the file name path.

For the convenience of this example that may be relocated anywhere on the user's disk, the leading "./" or ".\" characters in the flist file name will be treated as a relative path to the data file names.

SIMULATED DATA ... RIGHT/LEFT

These data sets were generated by SPM2 from SPM-99 normalized input. The WFU_COMPATIBILITY functions were used to generate *.mat files in MATLAB 6.5 for all *.img and *.hdr outputs in ANALYZE format. These *.mat files indicate the orientation for SPM2 and SPM5 usage.

With or without the WFU_COMPATIBILITY functions, the BPM ancova results using this simulated data with the *.mat files will show a remaining activation on the LEFT.

MATLAB *.mat files may not be backwards compatible. If running with an earlier MATLAB version, the *.mat files could be unreadable. In that case, delete all the *.mat files in the wfu_bpm_data directory recursively before running BPM with the simulated data example files. Afterwards, if the SPM flag defaults.analyze.flip is set to 1, the ancova result will show the remaining activation on the RIGHT since the *.mat files, when present, indicate a flip.

WFU_BPM IMAGES

** Located in: wfu_bpm_data\bpm_img

IMAGES for RESULTS generated by wfu_bpm

These directories:

ancova anovaFMRI anovaVBM correlation regression

contain these images:

analysis contrast insertion spm_results

with the exception of correlation which has no contrast. The analysis, contrast, and insertion *.jpg files show the WFU BPM graphical user interface with default selections. The spm_results image within each directory shows the effect from:

SPM choose SPM.mat press Results button answer Results questions

The top-level directory contains an example of the SPM Results Questions/Answers.

Screenshots of Step by Step ANCOVA example

• BPM Analysis & Contrast Manager

Screenshots of Step by Step ANCOVA example

• SPM Insertion Tool & SPM/Results Q/A

Screenshots of Step by Step ANCOVA example

• SPM/Results

WFU BPM RESULTS

** Located in: wfu_bpm_data\bpm_results

RESULTS generated by wfu_bpm

The results directory specified for wfu_bpm must already exist before it is chosen by the SPM2 file selector. For the example simulated data, these results directories were created before running wfu_bpm:

ancova anovaFMRI anovaVBM correlation regression

The results in this directory were generated with SPM2 running MATLAB 7.1 under the PC/Windows operating system.

BPM RESULTS -- versions, operating system, byte order

The SPM.mat files created by SPM2 do not display properly on an operating system with a different endian byte order.

The SPM.mat results in this directory, generated on PC/Windows, can be displayed correctly under Linux or PC/Windows. However, if using Solaris, the graph shows a gray mass covering the whole brain. This is an issue with SPM2 but may be resolved in SPM5.

Note that earlier MATLAB versions may not be able to read any of these *.mat files output by MATLAB 7.1.

BRAIN MASK

In all the steps listed below for generating the bpm_results output, no predefined brain mask is supplied. In this case, the BPM program creates one. The user should check the mask.img file so generated in the results directory to ensure its suitability. This mask represents the intersection of all individual masks from subjects in the main modality. For building the individual masks, the user may request either a proportional or absolute threshold. The proportional threshold is in relation to the absolute mean value of the signal. The absolute threshold is a fixed positive value input by the user.

NON-IMAGING COVARIATES

Non-imaging covariates can be specified in a single text file with one column for each non-imaging covariate involved in the analysis. A column contains values for each subject in the first group followed by values for each subject in the subsequent groups. The order of subject values for a group must correspond to the order of the subject images specified in the group f-list files. In the case of BPM multiple regression, each column will contain values for only one group.

************************ >>>> STEP BY STEP ANCOVA ****************** wfu_bpm (1) BPM BUTTON1: BPM Analysis Results directory bpm_results\ancova Select type of analysis Ancova How many groups Main group 1 file list bpm_simulated_data\fmri1.flist Name of data group (1 of 2) Main group 2 file list bpm_simulated_data\fmri2.flist Name of data group (2 of 2) fmri2 How many imaging covariates 1 Name of imaging covariate #1 vbm Modality 2 group 1 file list bpm_simulated_data\vbm1.flist Name of covariate for fmril vbm1 Modality 2 group 2 file list bpm_simulated_data\vbm2.flist Name of covariate for fmri2 vbm2 Any non-imaging covariates no Apply a predefined brain mask no Threshold type Proportional Threshold 0.1 Run BPM analysis now

(2) BPM BUTTON 2: Contrast Manager Select the BPM.mat file Enter new contrast Reset contrast history

no

yes

[1 -1 0]

(3) BPM BUTTON 3: SPM Insertion Tool Select the BPM.mat file map title

(4) SPM: select fMRI time-series Results Select SPM.mat

Select contrasts mask with other contrast(s) ROI Analysis

title for comparison p value adjustment to control threshold {T or p value}

& extent threshold {voxels}

bpm_results\ancova\BPM.mat Tmap1

bpm results\ancova\BPM.mat

bpm_results\ancova\SPM.mat Tmap1_01 no no Tmap1_01 none 0.001

```
************************
>>> STEP BY STEP ANOVA (fmri)
*******************
wfu_bpm
(1) BPM Analysis
Results directory
                                 bpm_results\anovaFMRI
Select type of analysis
                                 Anova
How many groups
Group 1 file list
                                 bpm_simulated_data\fmri1.flist
Name of data group (1 of 2)
Group 2 file list
                                 bpm_simulated_data\fmri2.flist
Name of data group (2 of 2)
                                 fmri2
Apply a predefined brain mask
                                 no
                                 Proportional
Threshold type
Threshold
                                 0.1
Run BPM analysis now
                                 yes
(2) Contrast Manager
                                 bpm_results\anovaFMRI\BPM.mat
Select the BPM.mat file
                                 [1 -1]
Enter new contrast
Reset contrast history
                                 no
(3) SPM Insertion Tool
Select the BPM.mat file
                                 bpm results\ancovaFMRI\BPM.mat
map title
                                 Tmap1
(4) SPM fMRI time-series
Results
Select SPM.mat
                                 bpm_results\ancovaFMRI\SPM.mat
Select contrasts
                                 Tmap1_01
mask with other contrast(s)
                                 no
ROI Analysis
                                 no
title for comparison
                                 Tmap1_01
p value adjustment to control
                                none
threshold {T or p value}
                                0.001
& extent threshold {voxels}
                                 0
For ANOVA VBM, follow the same steps, selecting:
results directory:
   anovaVBM
with file lists:
    vbm1.flist
    vbm2.flist
and with data group names:
    vbm1
    vbm2
```

wfu_bpm

(1) BPM Analysis
Results directory
Select type of analysis
Select type of Correlation Analysis
First file list for CORR
Second file list for CORR
Select type of Correlation
Apply a predefined brain mask
Threshold type
Threshold
Run BPM analysis now

bpm_results\correlation
Correlation Analyses
Correlation
bpm_simulated_data\fmri1.flist
bpm_simulated_data\vbm1.flist
Voxel-Voxel
no
Proportional
0.1
yes

(2) Contrast Manager SKIP THIS STEP FOR CORRELATION

(3) SPM Insertion Tool Select type of analysis Select the BPM.mat file map title map title

Homologous Correlation Field bpm_results\correlation\BPM.mat Corr_pos Corr_neg

(4) SPM fMRI time-series
Results
Select SPM.mat
Select contrasts
mask with other contrast(s)
ROI Analysis
title for comparison
p value adjustment to control
define threshold in terms of
threshold {0<p<0.25,uncorrected}
& extent threshold {voxels}

bpm_results\correlation\SPM.mat
Corr_pos_01
no
no
Corr_pos_01
none
P-value
0.001
0

************************ >>> STEP BY STEP REGRESSION ****************** wfu_bpm (1) BPM Analysis Results directory bpm results\regression Select type of analysis Regression Select dependent modality file list bpm simulated data\reg main mod.flist Name of main modality main Number of imaging covariates Name of imaging covariate #1 conf1 Name of imaging covariate #2 conf2 Select modality 2 file list bpm_simulated_data\reg_conf1.flist Select modality 3 file list bpm_simulated_data\reg_conf2.flist Any non-imaging covariates Apply a predefined brain mask no Threshold type Proportional Threshold 0.1 Run BPM analysis now yes (2) Contrast Manager Select the BPM.mat file bpm_results\regression\BPM.mat Select the contrast type Select the regressors [1 0] Reset contrast history no (3) SPM Insertion Tool bpm_results\regression\BPM.mat Select the BPM.mat file map title Fmap1 (4) SPM fMRI time-series Results Select SPM.mat bpm_results\regression\SPM.mat