Power & Sample Size Maps for Neuroimaging Studies by Non-Central Random Field Theory (319-TH-AM)

Satoru Hayasaka, Ann M. Peiffer, Christina E. Hugenschmidt, Paul J. Laurienti

Advanced Neuroscience Imaging Research (ANSIR) Laboratory
Wake Forest University School of Medicine
How many subjects do we need to scan in our study?
Motivation

- Neuroimaging data analysis
 - Voxel-by-voxel basis (massively univariate)
- Calculating power – difficult due to
 - Massive multiple comparisons
 - Spatial correlation
 → No effective power calculation method
- Random field theory (RFT)-based method
 - Accounting for multiple comparisons
Statistical Power

- Power \leftarrow distributions under H_0 and H_A

Under H_0

No signal

Under H_A

Signals in some areas

Threshold (p<0.05, FWE corr.)

To control family-wise error (FWE) rate
Modeling Signals

• Finding distribution under H_A
 - Defining H_A explicitly
 - Signal areas and effect size

• Non-central T- or F-random field
 - To describe 3D nature of signals
 - Analogous to non-central random variable

Effect size $d=1.2$
Power Calculation Formula

Power can be calculated by

\[\text{Power} \approx \sum_{i=0}^{3} \mu_i(B) \rho_i'(\mu_c; \delta) \]

- Resel count (describing)
- Resel density (non-central T- or F-field)
- Non-centrality parameter (describing effect size)
- FWE-corrected threshold
Power Curves

- Information required
 - Signal area ← *a priori* hypothesis
 - Effect size ← Pilot data, literature
- Example: auditory fMRI experiment

<table>
<thead>
<tr>
<th>Areas of anticipated signals</th>
<th>Left auditory cortex</th>
<th>Right auditory cortex</th>
<th>Left & right auditory cortices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effect size</td>
<td>1.15</td>
<td>0.99</td>
<td>1.07</td>
</tr>
</tbody>
</table>
Multiple Power Curves

- With a pilot data set
 - Effect size → power curve
 - Small neighborhood around each voxel

Power curves → displayed as a 3D image
Power Maps

- Shows local variability in sensitivity
- Example: auditory fMRI experiment
 - Power with different sample sizes
Sample Size Maps

- Visualizing sample size N
 - To detect signals at given power
 - Tool for study planning

Power=70% Power=80% Power=90%

Sample size

N=11 N=13 N=15
Application

• Mock pilot data set
 – Auditory fMRI experiment
 – 5 contrast images from original N=41
 – Activation (white noise > silence)

• Objective: how many subjects?
 – Determined from mock pilot data (N=5)
Mock Pilot Data

- Intra-subject analyses
 - Activations in L/R auditory cortices

- Group analysis
 - No activation
 - Low df (=4)
Power & Sample Size Maps

Sample size (80% power)

13+ subjects needed for ≥80% power

Elevated power in auditory cortices

Group analysis (N=15)

Significant activations as predicted
Conclusion

- **RFT-based power calculation**
 - Power corrected for multiple comparisons
- **Power & sample size maps**
 - Local variability in sensitivity
 - Generated with small sample size
- **Useful study planning tool**
In the Future

- Poster on Thursday (319-TH-AM)
- To appear in NeuroImage
- Software tool for power calculation
- Visit our web site
 http://www.fmri_wfubmc.edu/
Acknowledgements

• Funding
 – National Institute of Health (NS042568)
 – Dana Foundation
 – Wake Forest University
 • GCRC (RR07122)
 • Kulynych Memory & Cognition Research Center

• ANSIR Lab