1 Overview

The Euler Characteristic (EC) densities for non-central T- and F-fields can be obtained by

$$\rho_i(u) = (-1)^{i-1} E \left[\tilde{A}^{(i)} \det \left(\tilde{A}_{i-1} \right) | A = u, \tilde{A}_{i-1} = 0 \right] \theta_{i-1} \left(\tilde{A}_{i-1} = 0 \right)$$ \hspace{1cm} (1.1)

In order to use this formula, we first need to derive the first and second derivatives of these non-central fields. Derivation of the derivatives and the EC densities for central T- and F-random fields has been described in details by Worsley (1994). Since non-central random fields are derived from Gaussian random fields, we follow the derivation by Adler (1980) and Worsley (1994) to find the derivatives and EC densities for non-central T- and F-fields.

2 EC Densities of a Non-Central T-Field

2.1 Definition

Let $Z(t)$, $X_1(t)$, $X_2(t)$, \cdots, $X_m(t)$ be independent and identically distributed (iid) Gaussian random fields (Adler, 1980) at $t = (t_1, t_2, \cdots, t_N) \in \mathbb{R}^N$, with zero mean and unit variance. For simplicity, the location index t is dropped without loss of generality. The spatial correlation of these random fields can be expressed in terms of the variance of their first derivative $\Lambda = \text{var}(\tilde{Z}) = \text{var}(\tilde{X}_i)$ for $i = 1, 2, \cdots, m$. The squared-sum of X_i, $V = X_1^2 + X_2^2 + \cdots + X_m^2$, forms a χ^2 random field with degrees of freedom $df = m$ (Adler, 1980; Worsley, 1994). Then

$$T = \frac{\sqrt{m}Z}{V^{\frac{1}{2}}}$$

is a T-field with $df = m$. Similarly, we define a non-central T-field as

$$S = \frac{\sqrt{m}(Z + \delta)}{V^{\frac{1}{2}}}$$

with $df = m$ and non-centrality parameter $nc = \delta$. In this work, δ is assumed to be a real-valued constant.
2.2 Derivatives

Lemma 2.1. The first and second derivatives of a non-central T-field \(S \) with \(df = m \) and \(nc = \delta \) can be expressed as

(a) \(\dot{S} = \sqrt{m} \left(1 + \frac{s^2}{m} \right) W^{-\frac{1}{2}} R_1 \)

(b) \(\ddot{S} = \sqrt{m} \left(1 + \frac{s^2}{m} \right) W^{-1} \left\{ W^{\frac{1}{2}} H - R_1 R_2^T - R_2 R_1^T + \frac{8}{\sqrt{m}} (2R_1 R_1^T - P) + \left(1 + \frac{s^2}{m} \right)^{-\frac{1}{2}} W^{\frac{1}{2}} \delta \Lambda \right\} \)

where \(W \) is a non-central \(\chi^2 \) random variable with \(df = m + 1 \) and \(nc = \delta^2 \). \(R_1 \) and \(R_2 \) are iid \(\text{Norm} \{ 0, \Lambda \} \), \(H \sim \text{Norm}_{N \times N} \{ 0, M(\Lambda) \} \), and \(P \sim \text{Wishart}_N(\Lambda, m - 1) \). The elements of the matrix \(M(\Lambda) \) are given in Worsley (1994). In (a) and (b), equalities indicate equalities in law.

Proof. The first derivative of \(S \) can be written as

\[\dot{S} = \frac{\sqrt{m} \dot{Z}}{V^{\frac{1}{2}}} - \frac{1}{2} \frac{\sqrt{m}(Z + \delta) \dot{V}}{V^{\frac{3}{2}}} . \]

Worsley (1994) showed that \(\dot{Z} \sim R_Z \) and \(\dot{V} \sim 2V^{\frac{1}{2}} R_V \) where \(R_Z, R_V \sim \text{iid Norm}_N(0, \Lambda) \). Thus we can write the above as

\[\dot{S} = \frac{\sqrt{m}}{V} \left(V^{\frac{1}{2}} R_Z - (Z + \delta) R_V \right) . \]

Let \(W = V + (Z + \delta)^2 \), then \(W \sim \text{non-central \(\chi^2 \) with \(df = m + 1 \) and \(nc = \delta^2 \)}. Note that \(V^{-1} = \left(1 + \frac{s^2}{m} \right) W^{-1} \), and \(R_1 = W^{\frac{1}{2}} (V^{\frac{1}{2}} R_Z - (Z + \delta) R_V) \sim \text{Norm}_N(0, \Lambda) \) since it is a linear combination of iid \(\text{Norm}_N(0, \Lambda) \). Using these facts, we can rewrite the above expression for \(\dot{S} \) to prove (a). For \(\ddot{S} \), we first take the derivative of \(S \)

\[\ddot{S} = \frac{\sqrt{m} \ddot{Z}}{V^{\frac{1}{2}}} - \frac{1}{2} \frac{\sqrt{m} \dot{V} \dot{Z}^T}{V^{\frac{3}{2}}} - \frac{1}{2} \frac{\sqrt{m} \dot{Z} \dot{V}^T}{V^{\frac{3}{2}}} - \frac{1}{2} \frac{\sqrt{m}(Z + \delta) \ddot{V}}{V^{\frac{3}{2}}} + \frac{3}{4} \frac{\sqrt{m}(Z + \delta) \dot{V} \dot{V}^T}{V^{\frac{3}{2}}} . \]

Worsley (1994) showed that \(\dot{Z} | Z \sim (H_Z - Z \Lambda) \) and \(\dot{V} = 2 \left(P + R_V R_V^T - V \Lambda + V^{\frac{1}{2}} H_V \right) \) where \(H_Z, H_V \) are iid \(\text{Norm}_{N \times N}(0, M(\Lambda)) \). Thus, by rewriting the above in terms of \(R_Z, R_V, H_Z, \) and \(H_V \), we have

\[\ddot{S} = \frac{\sqrt{m}}{V} \left(V^{\frac{1}{2}} H_Z - (Z + \delta) H_V \right) + \frac{\sqrt{m} \Lambda}{V^{\frac{3}{2}}} + \frac{\sqrt{m}}{V} \left(-R_V R_Z^T - R_Z R_V^T + 2 \frac{(Z + \delta)}{V^{\frac{3}{2}}} R_V R_V^T \right) - \frac{\sqrt{m}(Z + \delta) P}{V^{\frac{3}{2}}} . \]

Since \((V^{\frac{1}{2}} H_Z - (Z + \delta) H_V) \) is a linear combination of normals, it is equivalent to \(W^{\frac{1}{2}} H \) where \(H \sim \text{Norm}_{N \times N}(0, M(\Lambda)) \). Next, let \(R_2 = W^{\frac{1}{2}} (V^{\frac{1}{2}} R_V - (Z + \delta) R_Z) \). Then \(R_1 \) and \(R_2 \) are iid \(\text{Norm}_N(0, \Lambda) \), and

\[\frac{\sqrt{m}}{V} \left(-R_V R_Z^T - R_Z R_V^T + 2 \frac{(Z + \delta)}{V^{\frac{3}{2}}} R_V R_V^T \right) = \frac{\sqrt{m}}{V} \left(-R_1 R_1^T - R_2 R_2^T + 2 \frac{(Z + \delta)}{V^{\frac{3}{2}}} R_1 R_1^T \right) \]

(Worsley, 1994). Finally, since \(V^{-1} = \left(1 + \frac{s^2}{m} \right) W^{-1} \), we can rewrite \(\ddot{S} \) above and prove (b). \(\square \)

The first derivative \(\dot{S} \) is almost identical to that of a T-field (Worsley, 1994), in which the non-central random variables \(S \) and \(W \) are replaced by the corresponding central random variables. The second derivative \(\ddot{S} \) is also similar to that of a T-field (Worsley, 1994), but has an extra term involving \(\delta \Lambda \).
2.3 EC Densities

Theorem 2.1. The i-dimensional EC density $\rho_i(u)$ of a non-central T-field S with $df = m$ and $nc = \delta$ is given by

$$\rho_i(u) = (-1)^{i-1} \frac{(\det(\Lambda)^\frac{1}{2}}{(2\pi)^{\frac{i}{2}}} \sqrt{m} \left(1 + \frac{u^2}{m} \right) Q_i,m(u),$$

where $Q_i,m(u)$ is a polynomial given by

$$Q_i,m(u) = \sum_{j=0}^{i \wedge} \frac{(-1)^{i+j+k-1}(i-1)!}{2^{j+k} j!k!} (\frac{u^2}{m})^{\frac{i-2j-k}{2}} \left(1 + \frac{u^2}{m} \right)^{-\frac{k}{2}} \delta^k E \left[W^{-\frac{i-2j-k}{2}} \right] f_S(u)$$

where $f_S(u)$ is the probability density function of S.

Proof. This is a result of (2.1). We derive this by conditioning (1.1) on W and $S = u$, then by taking the expectation on W (Worsley, 1994). In other words, we find

$$E \left[\hat{S}^{(i)+} \det(\hat{S}_{i-1}) | S = u, \hat{S}_{i-1} = 0 \right] \theta_{i-1} \left(\hat{S}_{i-1} = 0 \right)$$

$$= EW \left[E \left[\hat{S}^{(i)+} \det(\hat{S}_{i-1}) | S = u, W, \hat{S}_{i-1} = 0 \right] \psi_{i-1} \left(\hat{S}_{i-1} = 0 | S = u, W \right) \right] f_S(S = u)$$

where ψ_{i-1} is the conditional density function of \hat{S}_{i-1} given S and W. Since \hat{S} is a multi-variate normal (Lemma 2.1),

$$\psi_{i-1} \left(\hat{S}_{i-1} = 0 | S, W \right) = \frac{1}{(2\pi)^{\frac{i-1}{2}} (\det(\Lambda_{i-1}))^{\frac{1}{2}} a^{i-1}}$$

where $a = \sqrt{m} \left(1 + \frac{u^2}{m} \right) W^{-\frac{1}{2}}$. By conditioning on S, W, and $\hat{S}_{i-1} = 0$, we can express \hat{S}_{i-1} as

$$\hat{S}_{i-1} = \frac{a}{b} (P_{i-1} + bH_{i-1} + d\Lambda_{i-1})$$

where $b = -\frac{\sqrt{m} W^{\frac{1}{2}}}{S}$, $d = b \left(1 + \frac{u^2}{m} \right)^{-\frac{1}{2}} \delta$, Λ_{i-1} is the first $i-1$ rows and columns of Λ, $P_{i-1} \sim Wishart_{i-1}(\Lambda_{i-1}, m-1)$, and $H_{i-1} \sim Norm_{i(i-1)}(0, M(\Lambda_{i-1}))$. This is independent of \hat{S}, thus we can split the expectation

$$E \left[\hat{S}^{(i)+} \det(\hat{S}_{i-1}) | S, W, \hat{S}_{i-1} = 0 \right]$$

$$= E \left[\hat{S}^{(i)+} | S, W, \hat{S}_{i-1} = 0 \right] E \left[\det(\hat{S}_{i-1}) | S, W, \hat{S}_{i-1} = 0 \right]$$

The expectation of $\hat{S}^{(i)+}$ can be easily obtained as

$$E \left[\hat{S}^{(i)+} | S, W, \hat{S}_{i-1} = 0 \right] = \frac{a}{(2\pi)^{\frac{i}{2}}}$$

where $\lambda_i = \operatorname{var}(R_{i,j}^{(i)}) | R_{i,1}^{(1)}, R_{i,2}^{(2)}, \ldots, R_{i,i}^{(i-1)}$, with $R_{i,j}^{(j)}$ indicating the j-th element of R_{i} (Adler, 1980; Worsley, 1994). For the expectation of $\det(\hat{S}_{i-1})$, let B be an orthogonal $(i-1) \times (i-1)$ matrix such that $B^T \Lambda_{i-1} B = I_{i-1}$, $B^T P_{i-1} B = P_{i-1}^* \sim Wishart_{i-1}(I_{i-1}, m-1)$, and $B^T H_{i-1} B = H_{i-1}^* \sim Norm_{(i-1)(i-1)}(0, M(I_{i-1}))$ (Worsley, 1994). Then

$$E \left[\det(\hat{S}_{i-1}) | S, W, \hat{S}_{i-1} = 0 \right] = E \left[\det \left(\frac{a}{b} (P_{i-1} + bH_{i-1} + d\Lambda_{i-1}) \right) \right]$$

$$= \det(\Lambda_{i-1}) \frac{a^{i-1}}{b^{i-1}} E \left[\det \left(B^T (P_{i-1} + bH_{i-1} + d\Lambda_{i-1}) B \right) \right]$$

$$= \det(\Lambda_{i-1}) \frac{a^{i-1}}{b^{i-1}} E \left[\det \left(P_{i-1}^* + bH_{i-1}^* + dI_{i-1} \right) \right].$$
Using the results from Lemma A.2 in Appendix A, we obtain

\[E \left[\det \left(\frac{\Lambda_{i-1}}{b} \right) \right] = \det(\Lambda_{i-1}) \frac{n-1}{\rho} \sum_{j=0}^{i-1} \frac{(-1)^j}{2^j j!} \sum_{k=0}^{i-2j-1} \frac{1}{k!} \frac{(m-1)(i-1)!}{i-2j-1} d^k. \]

Using these results, we can find inside the expectation \(E_W \cdot \hat{f} \).

\[
E \left[\hat{S}^{(i)} + S, W, \hat{S}_{i-1} = 0 \right] \hat{E} \left[\hat{S} \left| S, W, \hat{S}_{i-1} = 0 \right) \right] \psi_{i-1} \left(\hat{S}_{i-1} = 0 \mid S, W \right)
\]

\[
= \lambda_i (\det(\Lambda_{i-1}))^{\frac{j}{2}} \left(\frac{1}{(2\pi)^{\frac{j}{2}}} \sum_{j=0}^{\left\lfloor \frac{i-1}{2} \right\rfloor} \frac{(-1)^j}{2^j j!} \sum_{k=0}^{i-2j-1} \frac{1}{k!} \frac{(m-1)(i-1)!}{i-2j-1} d^k \right).
\]

Note that \(\lambda_i \det(\Lambda_{i-1}) = \det(\Lambda) \). By substituting back \(a, b, \) and \(d, \) we have

\[
E \left[\hat{S}^{(i)} + S, W, \hat{S}_{i-1} = 0 \right] \hat{E} \left[\hat{S} \left| S, W, \hat{S}_{i-1} = 0 \right) \right] \psi_{i-1} \left(\hat{S}_{i-1} = 0 \mid S, W \right)
\]

\[
= \frac{(\det(\Lambda))^{\frac{j}{2}}}{(2\pi)^{\frac{j}{2}}} \sqrt{m} \left(1 + \frac{S^2}{m} \right) \sum_{j=0}^{\left\lfloor \frac{i-1}{2} \right\rfloor} \frac{(-1)^j}{2^j j!} \sum_{k=0}^{i-2j-1} \frac{1}{k!} \frac{(m-1)(i-1)!}{i-2j-1} \delta^{j}W_{-\frac{1}{2}-j-k}.
\]

Taking the expectation of the above at \(S = u \) over \(W, \) and multiplying by \((-1)^{i-1}\) and \(f_S(u), \) we prove the theorem.

From the theorem above, the EC densities \(\rho_i(u) \ (i = 0, 1, 2, 3) \) are given by

\[
\rho_0(u) = \int_{u}^{\infty} f_S(y)dy
\]

\[
\rho_1(u) = \frac{(\det(\Lambda))^{\frac{j}{2}}}{(2\pi)^{\frac{j}{2}}} \sqrt{m} \left(1 + \frac{u^2}{m} \right) \left[W^{-\frac{1}{2}} \right] f_S(u)
\]

\[
\rho_2(u) = \frac{(\det(\Lambda))^{\frac{j}{2}}}{2\pi} \sqrt{m} \left(1 + \frac{u^2}{m} \right) \left\{ (m-1) \left(\frac{u^2}{m} \right) ^\frac{j}{2} E \left[W^{-\frac{1}{2}} \right] - \left(1 + \frac{u^2}{m} \right) ^\frac{j}{2} \left[W^{-\frac{1}{2}} \right] \delta \right\} f_S(u)
\]

\[
\rho_3(u) = \frac{(\det(\Lambda))^{\frac{j}{2}}}{(2\pi)^{\frac{j}{2}}} \sqrt{m} \left(1 + \frac{u^2}{m} \right) \left\{ (m-1)(m-2) \left(\frac{u^2}{m} \right) E \left[W^{-\frac{3}{2}} \right] - 2(m-1) \left(\frac{u^2}{m} \right) ^\frac{j}{2} \left(1 + \frac{u^2}{m} \right) ^\frac{j}{2} E \left[W^{-\frac{1}{2}} \right] \delta \right.
\]

\[
\left. + \left(1 + \frac{u^2}{m} \right) ^{-1} \left[W^{-\frac{1}{2}} \right] \delta^2 - E \left[W^{-\frac{1}{2}} \right] \delta \right\} f_S(u)
\]

where \(f_S(\cdot) \) is the probability density function of a non-central T-random variable with \(df = m \) and \(nc = \delta \) (Lehmann, 1986) given by

\[
f_S(s) = \frac{1}{2^{\frac{m+2}{2}} \Gamma \left(\frac{m+1}{2} \right) } \sqrt{m\pi} \int_{0}^{\infty} y^{\frac{m+1}{2}} \exp \left(-\frac{y}{2} \right) \exp \left(-\frac{1}{2} \left(\frac{s}{\sqrt{\frac{y}{m}} - \delta} \right) ^2 \right) dy.
\]
To find the expectation of a non-central χ^2 random variable W, we can use the results from Johnson and Kotz (1970). For a non-central χ^2 random variable W with $df = \nu$ and $nc = \eta$, the expectation of W^d with real-valued d is given by

$$E[W^d] = 2^d \Gamma\left(d + \frac{\nu}{2}\right) \sum_{j=0}^{\infty} \frac{\Gamma(d + 1)}{\Gamma(j + 1)\Gamma(d - j + 1)} \left(\frac{\eta}{2}\right)^j \frac{1}{\Gamma\left(j + \frac{d}{2}\right)}.$$ \hspace{1cm} (2.1)

Note that, for $\delta = 0$, the EC densities above are equal to that of a T-field with the same df.

3 EC Densities of a Non-Central F-Field

3.1 Definition

Let Z_1, Z_2, \ldots, Z_m, and X_1, X_2, \ldots, X_n be iid Gaussian random fields at $t = (t_1, t_2, \ldots, t_N) \in \mathbb{R}^N$, with zero mean and unit variance, and $\Lambda = \text{var}(\dot{Z}_j) = \text{var}(X_k)$. Let

$$U = \sum_{j=1}^{m} (Z_j + \eta_j)^2$$

with real valued scalars η_j, and let

$$V = X_1^2 + X_2^2 + \cdots + X_n^2.$$ \hspace{1cm} (2.1)

Then we define U as a non-central χ^2 random field with $df = m$ and $nc = \eta = \sum_{j=1}^{m} \eta_j^2$, and V is a χ^2 random field with $df = n$. Furthermore, we define $F = \frac{U}{V}$ as a non-central F-random field with $df = (m, n)$ and $nc = \eta$.

Before we derive derivatives and EC densities of the non-central field F, we first find derivatives of a non-central χ^2 field. Then we find the derivatives and EC densities for $G = \frac{U}{V} = \frac{m}{n} F$ for simplicity, and transform the results back to F (Worsley, 1994).

3.2 Derivatives

Lemma 3.1. The first and second derivatives of a non-central χ^2 field U with $df = m$ and $nc = \eta$ can be expressed as

(a) $\dot{U} = 2U^\frac{1}{2} R_U$

(b) $\ddot{U} = 2 \left(P + R_U R_U^T - U\Lambda + D\Lambda + U^\frac{1}{2} H \right)$

where $R_U \sim \text{Norm}_N(0, \Lambda)$, $P \sim \text{Wishart}_N(\Lambda, m-1)$, $D \sim \text{Norm}(\eta, \eta)$, and $H \sim \text{Norm}_{N \times N}(0, M(\Lambda))$. The equalities above are equalities in law.

Proof. The first derivative of U can be written as $\dot{U} = 2 \sum_{i=1}^{m} (Z_i + \eta_i) \dot{Z}_i$. From Worsley (1994), $\dot{Z}_i \sim \text{Norm}_N(0, \Lambda)$. Thus \dot{U} is a sum of iid normals with mean 0 and variance $4U$, and can be written as $\dot{U} = 2U^\frac{1}{2} R_U$, with $R_U \sim \text{Norm}_N(0, \Lambda)$. This proves (a). The second derivative can be written as

$$\ddot{U} = \left(\sum_{i=1}^{m} (Z_i + \eta_i) \right)' \dot{Z}_i = \sum_{i=1}^{m} \dot{Z}_i \dot{Z}_i^T + \sum_{i=1}^{m} (Z_i + \eta_i) \ddot{Z}_i.$$ \hspace{1cm} (2.1)

Since $\ddot{Z}_i \sim \text{Norm}_{N \times N}(-Z_i, \Lambda, M(\Lambda))$ (Worsley, 1994), the second sum above, $2 \sum_{i=1}^{m} (Z_i + \eta_i) \ddot{Z}_i$ is normally distributed with mean $-2U\Lambda + 2D\Lambda$ and variance $4U M(\Lambda)$, where $D = \sum_{i=1}^{m} (Z_i + \eta_i)$. It is easy to see that $D \sim \text{Norm}(\eta, \eta)$, and we can write

$$\ddot{U} = 2 \left(\sum_{i=1}^{m} \dot{Z}_i \dot{Z}_i^T - U\Lambda + D\Lambda + U^\frac{1}{2} H \right)$$

where $H \sim \text{Norm}_{N \times N}(0, M(\Lambda))$. The sum $\sum_{i=1}^{m} \dot{Z}_i \dot{Z}_i^T$ can be written as $P + R_U R_U^T$ where $P \sim \text{Wishart}_N(\Lambda, m-1)$ (Worsley, 1994), and this proves (b). \hfill \Box
The first derivative \dot{U} is almost identical to that of a χ^2 field (Worsley, 1994). The second derivative is also similar to that of a χ^2 field, with an extra term $2DA$.

Lemma 3.2. Let F be a non-central F-random field with $df = (m, n)$ and $nc = \eta$, and let $G = \frac{m}{n} F$. Then the first and second derivatives of G are

(a) $\dot{G} = 2G\dot{\frac{1}{2}}(1 + G)W^{\frac{1}{2}} R_1$

(b) $\ddot{G} = 2(1 + G)$

\[
\left\{ W^{-1} \left(P - GQ + (1 + 3G)R_1 R_1^T - G\dot{\frac{1}{2}}(R_1 R_1^T + R_2 R_2^T) + DA \right) + G\dot{\frac{1}{2}}W^{-\frac{1}{2}} H \right\}
\]

where $R_1, R_2 \sim \text{ iid } \text{Norm}_N(\mathbf{0}, \Lambda)$, $P \sim \text{ Wishart}_N(\Lambda, m - 1)$, $Q \sim \text{ Wishart}_N(\Lambda, n - 1)$, $D \sim \text{ Norm}(\eta, \eta)$, and $W = U + V$ is a non-central χ^2 field with $df = m + n$ and $nc = \eta$. The equalities above are equalities in law.

Proof. The proof for (a) is identical to that of the central G (Worsley, 1994), which follows from the first derivative of U in Lemma 3.1.

The proof for (b) is similar to that of a central F-field (1994). The only difference is that \dot{U} has an extra term $2DA$. Thus the term $2(1 + G)W^{-1} DA$ is added to the second derivative of the central G (1994), resulting in (b) above. \(\square\)

3.3 EC Densities

Theorem 3.1. The i-dimensional EC density $\rho_i(u)$ of a non-central F-field F is given by

\[
\rho_i(u) = (-1)^{i-1} \left(\frac{(\det(\Lambda))^{\frac{1}{2}}}{(2\pi)^\frac{i}{2}} \right) 2 \left(1 + \frac{m}{n} u \right) \left(\frac{m}{n} u \right)^{-\frac{i}{2} + 1} K_{i,m,n}(u)
\]

where $K_{i,m,n}(u)$ is a polynomial given by

\[
K_{i,m,n}(u) = \sum_{j=0}^{i-1} \sum_{k=0}^{i-2j-1} \sum_{\ell=0}^{i-1-j-2j-1} \left(\begin{array}{c} m - 1 \\ i - 2j - k - 1 \\ k - \ell \end{array} \right) \frac{(-1)^{i+j-k}(N-1)!}{2j!}
\]

\[
\left(\frac{m}{n} u \right)^{j+k-\ell} E[W^{-\frac{1}{2}}] E[D^{\ell}] \left(\frac{n}{m} \right) f_F(u)
\]

where $f_F(u)$ is the probability density function of F.

Proof. For simplicity, we find the expectation (1.1) for $G = \frac{m}{n} F = \frac{U}{V}$, then we transform it back to F. The proof is similar to that of Theorem 2.1. First, we write (1.1) as

\[
E \left[\dot{G}^{(i)} \det \left(\dot{G} \right) \left| G = g, \dot{G} = \mathbf{0} \right\} \right] \theta_{i-1} \left(\dot{G} = \mathbf{0} \right)
\]

\[
= E_{\dot{W}} \left[E \left[\dot{G}^{(i)} \det \left(\dot{G} \right) \left| G = g, W, \dot{G} = \mathbf{0} \right\} \psi_{i-1} \left(\dot{G} = \mathbf{0} \right| G = g, W \right] \right] f_{\dot{G}}(G = g)
\]

where θ_{i-1} is the probability density function of \dot{G}_{i-1}, ψ_{i-1} is the conditional density function of \dot{G}_{i-1} conditioned upon G and W, and $f_{\dot{G}}$ is the probability density function of G. Since \dot{G} is a multi-variate normal,

\[
\psi_{i-1} \left(\dot{G} = \mathbf{0} \right| G, W \right) = \frac{1}{(2\pi)^{\frac{i}{2}} (bc)^{-1}(\det(\Lambda_{i-1}))^{\frac{1}{2}}}
\]

where $b = G\dot{\frac{1}{2}}W^{\frac{1}{2}}$ and $c = 2(1 + G)W^{-1}$. Conditioning on G, W, and $\dot{G}_{i-1} = \mathbf{0}$, we can write \dot{G}_{i-1} as

\[
\dot{G}_{i-1} = c(P_{i-1} + aQ_{i-1} + bH_{i-1} + d\Lambda_{i-1})
\]
where \(a = -G = (-1)G \) and \(d = D \). Similar to the proof of Theorem 2.1, we can split the expectation above

\[
E \left[\dot{G}^{(i)} \det \left(\tilde{G}_{i-1} \right) \right] G, W, \dot{G}_{i-1} = 0 = E \left[\dot{G}^{(i)} \right] G, W, \dot{G}_{i-1} = 0 \right] E \left[\det \left(\tilde{G}_{i-1} \right) \right] G, W, \dot{G}_{i-1} = 0 \right] .
\]

The expectation of \(\dot{G}^{(i)} \) is \(\frac{\lambda^2}{(2\pi)^{\frac{1}{2}}} \). For the expectation of \(\det(\dot{G}_{i-1}) \), we use the orthogonalization technique used in the proof of Theorem 2.1. Let \(B \) be an \((i-1) \times (i-1)\) orthogonal matrix described in the proof of Theorem 2.1. Then

\[
E \left[\det(\dot{G}_{i-1}) \right] G, W, \dot{G}_{i-1} = 0 = \det(\Lambda_{i-1}) c^{i-1} E \left[\det \left(P^*_{i-1} + aQ^*_{i-1} + bH^*_{i-1} + dI_{i-1} \right) \right]
\]

where \(P^* \) and \(H^* \) are as described in the proof of Theorem 2.1 and \(B^TQB = Q^* \sim \text{Wishart}_{i-1}(I_{i-1}, n-1) \). From Lemma A.4 of Appendix A, we can write the above as

\[
E \left[\dot{G}_{i-1} \right] G, W, \dot{G}_{i-1} = 0 = \det(\Lambda_{i-1}) c^{i-1} \sum_{j=0}^{\frac{i-2}{2}} (-1)^j (i-1)! \frac{1}{2^j} \sum_{k=0}^{i-2j-1} \left(\begin{array}{c} m-1 \\ i-2j-k-1 \end{array} \right) \sum_{\ell=0}^{k} \frac{a^{k-\ell}E[d^\ell]}{\ell!} \left(\begin{array}{c} n-1 \\ k-\ell \end{array} \right).
\]

Using these results, we can find inside the expectation \(E_W[\cdot] \),

\[
E \left[\dot{G}^{(i)} \right] G, W, \dot{G}_{i-1} = 0 = E \left[\dot{G}_{i-1} \right] G, W, \dot{G}_{i-1} = 0 \psi_{i-1} \left(\dot{G}_{i-1} = 0 \right) G, W = \frac{(\det(\Lambda))^\frac{i}{2}}{(2\pi)^\frac{i}{2}} \frac{c}{b^{i-2}} \sum_{j=0}^{\frac{i-2}{2}} (-1)^j (i-1)! \frac{1}{2^j} \sum_{k=0}^{i-2j-1} \left(\begin{array}{c} m-1 \\ i-2j-k-1 \end{array} \right) \sum_{\ell=0}^{k} \frac{a^{k-\ell}E[d^\ell]}{\ell!} \left(\begin{array}{c} n-1 \\ k-\ell \end{array} \right).
\]

Substituting back \(a, b, c, \) and \(d \), we have

\[
E \left[\dot{G}^{(i)} \right] G, W, \dot{G}_{i-1} = 0 = \phi_{i-1} \left(\dot{G}_{i-1} = 0 \right) G, W = \frac{(\det(\Lambda))^\frac{i}{2}}{(2\pi)^\frac{i}{2}} 2(1 + G)^{\frac{i}{2} + 1} \sum_{j=0}^{\frac{i-2}{2}} \sum_{k=0}^j \sum_{\ell=0}^{k} \left(\begin{array}{c} m-1 \\ i-2j-k-1 \end{array} \right) \left(\begin{array}{c} n-1 \\ k-\ell \end{array} \right) (-1)^{j+k-\ell} (i-1)! \frac{1}{2^j \ell!} G^{j+k-\ell} W^{\frac{i-2j}{2}} E[D^\ell].
\]

Taking the expectation \(E_W[\cdot] \) at \(G = g \), multiplying by \((\lambda)^{i-1}\) and \(f_G(g) \), and transforming \(G \) to \(F = \frac{m}{m-1} G \), we can obtain the EC density for \(F \).

\[\square\]

Note that, since \(D \sim \text{Norm}(\eta, \eta) \), \(E[D^0] = 1 \), \(E[D] = \eta \), and \(E[D^2] = \eta + \eta^2 = \eta(1 + \eta) \). The EC
det(Λ) = \frac{1}{(2\pi)^{n/2}} \int_{-\infty}^{\infty} f_F(y) dy

\rho(c) = \frac{(\text{det}(\Lambda))^\frac{c}{2}}{(2\pi)^{n/2}} \int_{-\infty}^{\infty} f_F(y) dy

\rho_1(u) = \frac{(\text{det}(\Lambda))^\frac{1}{2}}{(2\pi)^{n/2}} \int_{-\infty}^{\infty} f_F(y) dy

\rho_2(u) = \frac{(\text{det}(\Lambda))^\frac{1}{2}}{(2\pi)^{n/2}} \int_{-\infty}^{\infty} f_F(y) dy

\rho_3(u) = \frac{(\text{det}(\Lambda))^\frac{3}{2}}{(2\pi)^{n/2}} \int_{-\infty}^{\infty} f_F(y) dy

where the probability density function of F, \(f_F(u) \) (Johnson and Kotz, 1970), is

\[f_F(u) = \frac{1}{\beta^\frac{n}{2} \Gamma(n/2)} \frac{u^{n/2 - 1}}{(n + nu)^{n/2 + m/2}} \sum_{j=0}^{\infty} \left(\frac{\eta u}{n + nu} \right)^j \frac{\Gamma(n/2 + j)}{j! \Gamma((n + m)/2)} \frac{\Gamma((n + m)/2)}{\Gamma((n + m)/2) + j} \]

and \(E[W]\) is given by (2.1).

Appendix

A Matrix Algebra

We prove some results used in the earlier proofs. Let \(A \) be an \(N \times N \) matrix, then we denote \(\text{det} r_j(A) \) to be the sum of the determinant of all the \(j \times j \) principal minors of \(A \). Note that, for an \(N \)-dimensional identity matrix \(I_N \), \(\text{det} r_k(I_N) = \binom{N}{N-k} \). This is a result from the expansion of the characteristic polynomial \(\text{det}(I_N + xI_N) = (1 - x)^N \).

Lemma A.1. Let \(P \sim \text{Wishart}_N(I_N, m) \) and \(a \) be a real number. Then

\[E[\text{det} r_j(P + aI_N)] = \sum_{k=0}^{j} \binom{N}{j-k} \frac{m!}{(m-j+k)!} a^k. \]

Proof. The proof is similar to that of Lemma A.4, Worsley (1994).

\[E[\text{det} r_j(P + aI_N)] = \sum_{k=0}^{j} \binom{N-k}{j-k} \frac{m!}{(m-j+k)!} \text{det} r_k(I_N) a^k \]

\[= \sum_{k=0}^{j} \binom{N-k}{j-k} \frac{m!}{(m-j+k)!} \binom{N}{N-k} a^k \]

\[= \sum_{k=0}^{j} \frac{(N-k)!m!N!}{(j-k)!(N-j)!(m-j+k)!(N-k)!} a^k \]

\[= \sum_{k=0}^{j} \frac{m!}{j-k} \frac{N!}{(N-j)!} a^k. \]
Lemma A.2. Let $H \sim \text{Norm}_{N \times N}(\mathbf{0}, M(I_N))$. Then for real numbers a and b,

$$E[\det(P + aI_N + bH)] = \sum_{j=0}^{\left\lfloor \frac{N}{2} \right\rfloor} \frac{(-1)^{j} j!}{2^{j} j!} \sum_{k=0}^{N-2j} \left(\binom{m}{N-2j-k} \frac{k!}{k!} a^k. \right)$$

Proof. By fixing $P + aI$, we can use Lemma A.2, Worsley (1994).

$$E[\det(P + aI_N + bH)] = \sum_{j=0}^{\left\lfloor \frac{N}{2} \right\rfloor} \frac{(-1)^{j} (2j)!}{2^{j} j!} b^{2j} E[\det r_{N-2j}(P + aI_N)]$$

and the rest follows from Lemma A.1.

Lemma A.3. Let $Q \sim \text{Wishart}_{N}(I_N, n)$, and c be a real number. Then

$$E[\det r_j(P + aQ + cI_N)] = \sum_{k=0}^{j} \left(\frac{m}{j-k} \right) \frac{1}{(N-j)!} \sum_{\ell=0}^{k} a^{k-\ell} c^{\ell} \left(\frac{n}{k-\ell} \right) \frac{N!}{\ell!}.$$

Proof. Holding $aQ + cI_N$ fixed, then using Lemma A.1, we can show

$$E[\det r_j(P + aQ + cI_N)]$$

$$= \sum_{k=0}^{j} \left(\frac{m}{j-k} \right) \frac{1}{(N-j)!} \sum_{\ell=0}^{k} a^{k-\ell} c^{\ell} \left(\frac{n}{k-\ell} \right) \frac{N!}{\ell!}$$

Lemma A.4. Let P, Q, H, and I_N be as defined above, and let a, b, and c be real numbers. Then

$$E[\det(P + aQ + bH + cI_N)]$$

$$= \sum_{j=0}^{\left\lfloor \frac{N}{2} \right\rfloor} \frac{(-1)^{j} j!}{2^{j} j!} b^{2j} E[\det r_{N-2j}(P + aQ + cI_N)]$$

Proof. Holding $P + aQ + cI_N$ as a constant, then using Lemma A.3, we can show

$$E[\det(P + aQ + bH + cI_N)]$$

$$= \sum_{j=0}^{\left\lfloor \frac{N}{2} \right\rfloor} \frac{(-1)^{j} (2j)!}{2^{j} j!} b^{2j} \sum_{k=0}^{N-2j} \left(\frac{m}{N-2j-k} \right) \frac{1}{(2j)!} \sum_{\ell=0}^{k} a^{k-\ell} c^{\ell} \left(\frac{n}{k-\ell} \right) \frac{N!}{\ell!}$$

9
References

